The metabolism of aromatic compounds in higher plants. VII. The origin of the nitrile nitrogen atom of dhurrin (beta-D-glucopyranosyloxy-L-p-hydroxymandelonitrile).

نویسندگان

  • E G Uribe
  • E E Conn
چکیده

The data obtained in these experiments show that the nitrile nitrogen of dhurrin is directly derived from the a-amino group of L-tyrosine. This is analogous to the retention of the a-amino nitrogen of valine on its conversion to linamarin (6). The biosynthetic route from L-tyrosine to dhurrin must involve the modification of the amino acid in a manner such that the C&z-N unit remains intact. 15N analyses of the amino acids isolated after L-tyrosiner4C, r5N feeding suggest that the L-tyrosine-L-alanine transaminationcouple is more active than the L-tyrosine-L-glutamic acid couple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum.

A cytochrome P450, designated P450ox, that catalyzes the conversion of (Z)-p-hydroxyphenylacetaldoxime (oxime) to p-hydroxymandelonitrile in the biosynthesis of the cyanogenic glucoside beta-D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile (dhurrin), has been isolated from microsomes prepared from etiolated seedlings of sorghum (Sorghum bicolor L. Moench). P450ox was solubilized using nonionic d...

متن کامل

The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (Linn) Moench.

The following compounds were tested as early intermediates in the conversion of tyrosine to p-hydroxymandelonitrile by a microsomal preparation from dark grown sorghum seedlings: p-hydroxyphenylacetamide, 1-nitro-2-p-hydroxyphenylethane, p-hydroxyphenyl-pyruvic acid oxime, tyramine, N-hydroxytyramine, and N-hydroxytyrosine. Of these, only N-hydroxytyrosine was metabolized to p-hydroxymandelonit...

متن کامل

Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis.

Novel cyanogenic plants have been generated by the simultaneous expression of the two multifunctional sorghum (Sorghum bicolor [L.] Moench) cytochrome P450 enzymes CYP79A1 and CYP71E1 in tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis under the regulation of the constitutive 35S promoter. CYP79A1 and CYP71E1 catalyze the conversion of the parent amino acid tyrosine to p-hydroxymandelonitr...

متن کامل

Involvement of Cytochrome P-450 in the Biosynthesis of Dhurrin in Sorghum bicolor (L.) Moench.

The biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin involves N-hydroxytyrosine, (E)- and (Z)-p-hydroxyphenylacetaldehyde oxime, p-hydroxyphenylacetonitrile, and p-hydroxymandelonitrile as intermediates and has been studied in vitro using a microsomal enzyme system obtained from etiolated sorghum (Sorghum bicolor [L.] Moench) seedlings. The biosynthesis is inhibited by carbon m...

متن کامل

Stereochemical aspects of the biosynthesis of the epimeric cyanogenic glucosides dhurrin and taxiphyllin.

Dhurrin, I ((S)-p-hydroxymandelonitrile-beta-D-glucopyranoside), and taxiphyllin, II (the (R) epimer), occur in the genera Sorghum and Taxus, respectively. Both derive biosynthetically from L-tyrosine via the hydroxylation of p-hydroxyphenylacetonitrile, III. (3R)- and (3S)-L-[3-3H1]tyrosine, prepared by enzymic hydroxylation of the corresponding phenylalanines, were fed separately to shoots fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 241 1  شماره 

صفحات  -

تاریخ انتشار 1966